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A B S T R A C T  

A Borel derivative on the hyperspace 2 X of a compactum X is a Borel 
monotone map D : 2 X --+ 2 X. The derivative determines a Cantor- 
Bendixson type rank 5 : 2 x --+ Wl t_J {cx~}. We show that if A C 2 x is 
analytic and Z C A intersects stationary many layers 5-1({~}), then for 
almost all ~, ANS-I({~})  cannot be separated from ZNU~<~  5-1({~}) 
(and also from Z A [J~>~ 5 -1({c~})) by any Fa-set. Another main result 
involves a natural partial order on 2 X related to the derivative. The re- 
sults are obtained in a general framework of "resolvable ranks" introduced 
in the paper. 

1. In troduct ion  

L e t  2 X b e  t h e  h y p e r s p a c e  of  a c o m p a c t  m e t r i c  space  X ,  i.e., t h e  space  of  c o m p a c t  

subse t s  of  X w i t h  t h e  H a u s d o r f f  me t r i c ,  cf. [Ku66, w VIII .  

A Bore l  d e r i v a t i v e  on  2 x is a Bore l  m a p  D:  2 x ~ 2 x wh ich  is m o n o t o n e ,  i.e., 

D ( K )  c K for K E 2 z .  

A n  i m p o r t a n t  e x a m p l e  of  a Bore l  de r i va t i ve  is t h e  C a n t o r - B e n d i x s o n  d e r i v a t i v e  

D ( K )  = K ' ,  w h e r e  K '  is t h e  set  of  a c c u m u l a t i o n  p o i n t s  of  K ,  cf. [Ku68, w 
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VIII, 2]. An illuminating presentation of Borel derivatives is given by Kechris 

[Ke94, 34]. 

For a Betel derivative D: 2 X --+ 2 X the a th  iterated derivative Da: 2 x --+ 2 z 

is defined inductively as follows: De(K) = K, D~+I(K) = D ( D ~ ( g ) )  and 

D~(K)  = A~<~ D~(K),  for limit a. Each D ~ is a Borel map [Ku68, w I], cf. 

also [CM83], where the Borel complexity of the iterations is investigated. 

The rank 5 : 2 x -+ wl U {oo} determined by a Borel derivative D on 2 x assigns 

to a compact set K in X the minimal ~ with D~+I(K) = 0, if such a ~ exists, or 

oo, if O 4 (K) r ~ for all ~. 

The following theorem is one of the main results of this paper (the terminology 

is explained in Section 2): 

1.1 THEOREM: Let 6 : 2  x -+ 031 O {OO} be the rank determined by a Bore1 

derivative D: 2 x --+ 2 x .  Let A be an analytic set in 2 x and let Z C A intersect 

stationary many layers 5-1({~}). Then, for all but non-stationary many ~ E •1, 

each F~-set containing A N 5-1({~}) intersects both sets Z n (.J~<e 5-1({a}) and 

Z N U,~>,~ ~-1 ({~}). 

For each ~ satisfying the assertion of Theorem 1.1, the analytic set A n 6-1({~}) 

is uncountable, hence it contains a Cantor set. Some stronger conclusions along 

this line are established in Theorem 1.2 below. 

A result analogous to Theorem 1.1 (with a somewhat weaker assertion) was 

obtained in a joint paper by G. Gruenhage and the authors [ChGP95, Corollary 

1.3] for the rank 5: W O  --> wl, where W O  is the space of well-ordered subsets of 

the rationals Q and 5(A) is the order type of A in WO.  In this case the layer 

5-1({~}) is the ~th Lusin's constituent WO~, cf. [Ku66, w XV], [Ke94, 27.C,D]. 

The set W O  has a natural partial order -<, see [Ku66, w XII (1)], and it 

was proved in [ChGP98, Proposition 5.3] that any Souslin set in W O  intersecting 

stationary many constituents WOr contains an ~-antichain intersecting all but 

non-stationary many constituents in a Cantor set. 

The next theorem provides a counterpart to this result for the Borel derivatives, 

where we associate with a Borel derivative D: 2 x -+ 2 x a partial order --< on 2 x 

defined by 

L ~ K  i f f L = D  ~(K) for somea .  

1.2 THEOREM: Let D: 2 x -~ 2 z be a Borel derivative and let _ and 5 be the 

partial order and the rank determined by D. Then each analytic set A C 2 x 

intersecting stationary many layers 6 -1 ({~}) contains an -~_-antichain intersecting 

all but non-stationary many layers ~-1({~}) in a Cantor set. 
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Our proofs will be based on the fact (proved in Section 3) that  for any Borel 

derivative D: 2 x --+ 2 x there is a continuous map 7r: M --+ 2 x from a complete 

metric space of weight R1 such that  the layers (5 o 7r)-1({~}) form a "natural  

stratification" of M; cf. Section 2. This allows one to use non-separable Borel 

theory in M,  notably some variations of A. H. Stone perfect set theorems, to get 

in effect Theorems 1.1 and 1.2. 

Such an approach was originated in [ChGP95, ChGP98] to obtain the above- 

mentioned results about  Lusin's constituents. 

It  is useful to carry out the arguments involving non-separable Borel theory 

in a more general setting, considering ranks 5: E --+ wl which admit  continuous 

parametrizat ions ~r: M -~ E on completely metrizable spaces of weight R1 with 

the layers of 5 o ~r: M --+ wl forming appropriate stratifications of M. We shall 

call such ranks resolvable. 

In Section 2 we clarify the terminology and we set some background for further 

discussion. In Section 3 we introduce the notion of resolvable ranks and we check 

that  the rank determined by a Borel derivative is resolvable. Then, in Sections 

4 and 5, we establish several facts about resolvable ranks which imply Theorems 

1.1 and 1.2, respectively. In Section 6 we prove a Hurewicz-type result hinting 

at some possible extensions of Theorem 1.1. The last section contains some 

additional information concerning the subject of this note. In particular, we 

provide there more examples of resolvable ranks and we generalize Theorems 1.1 

and 1.2 to the class of a-compact  spaces. Some other results involving resolutions 

for Lusin-Sierpifiski indices on coanalytic sets can be found also in [ChP]. 

2. T e r m i n o l o g y  a n d  s o m e  a u x i l i a r y  fac t s  

SOUSLIN AND ANALYTIC SETS. Let X be a topological space. A set S C X is 

Souslin in X if there is a Borel set B in the product X x N N by the irrationals 

which projects onto S. 

Let X be metrizable. Then B in the definition of Souslin sets can be chosen 

as a G~-set. The sets in X which are Souslin in a completion of X (no specific 

completion makes a difference) are called absolutely Souslin; in this case B can be 

chosen completely metrizable, i.e., an absolute G~-set. If both  S C X and X \ S 

are Souslin, S is called bi-Souslin. If X is a separable completely metrizable 

space, the Souslin sets in X coincide with the analytic sets in X,  i.e., continuous 

images of the irrationals, and the bi-Souslin sets are Borel, cf. [Ku66, Ke94, 
Ha92]. 
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STATIONARY SETS IN o21. A set of countable ordinals F C wl is stationary if P 
intersects each c.u.b, set in wl, i.e., each closed unbounded set, cf. [Kun 80, II, 

w We shall say that a property P(~) holds true for all but non-stationary many 

ordinals ~ in Wl if the set of ordinals ~ for which P(~) fails is non-stationary in 

Ld 1 . 

N A T U R A L  STRATIFICATIONS OF METRIZABLE SPACES OF WEIGHT R1. T h e  

Baire space B(R1) is the countable product of the discrete space of cardinality 

R1. The points of B(R1) are functions s: N --+ wl and we let 

(1) ~(s) = min{ol : s(N) C [0, a)}, 

(2) 

Then 

(3) 

and 

(4) 

Be = 

U B~ is separable and closed for ~ < 

U B~ = U B~ for limit 
a_<~ ~<~ 

Let X be a metrizable space of weight R1, let {x~ : a < wl} be dense in X, 

A(x) = min{~ : x E {x~ : a  < ~}}, and let 

(5)  ~ = ) t - - l ( { ~ } ) .  

Then {PC : ~ < Wl} is a decomposition of X satisfying (3) and (4) with B~ 

replaced by P~. Each such decomposition will be called a natural stratification 

of X. For any two natural stratifications {P~ : ~ < Wl} and {P~ : ~ < Wl} of X, 

(6) P~ = P~ and U P~ = U P~' for all but non-stationary many ~; 

cf. [Po78], [ChGP95, 4.3]. In particular, the statements of the form "non- 

stationary many layers of X have property P"  do not depend on a specific choice 

of a natural stratification of X. We shall rely on this fact omitting as a rule any 

reference to a concrete natural stratification of X. 

It will be convenient to deal with a more flexible class of decompositions of X. 
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2.1 Definition: A decomposition {P~ : ~ < wl} of X is an accep tab le  s t ra t i -  

f ica t ion  of X if it satisfies (6) for some (and hence, for an arbitrary) natural 

stratification {P~ : ~ < wl} of X. 

Before establishing yet another useful fact, let us recall that if Y is a selector 

for a natural stratification, then a-discrete subsets of Y are exactly the ones 

intersecting only non-stationary many layers; cf. [Po78, Sec. 2.3]. 

2.2 LEMMA: Assume that f :  X '  -+ X is a continuous mapping between metriz- 

able spaces, f - l ( x )  is separable for x E X ,  and f ( F )  is a-discrete for any a- 

discrete set F C X ' .  I f  {P~ : ( < w1} is a natural stratification of X then 

{P~: ~ < Wl}, where P~ = f - l (p~)  for ~ < Wl, is an acceptable stratification of  

X'. 

Proo~ Observe that {P~: ~ < wl} satisfies (3) with Ba replaced by P~. Hence 

the layers (5) of A defined by A(x) ~- min{~ : x E U~<~ P~} form a natural 

stratification of X' .  

It suffices to show that U~_<r P~ -- U~<~ P~ for all but non-stationary many 

~; cf. (4). Indeed, in this case, the layers of A witness that {P~ : ( < Wl} is 

acceptable. 

Suppose that  for ~ in a stationary set O in Wl the sets U~<~ P~ \ I.J~<~ P~ -- 

A-I({~ + 1}) are nonempty, and let Yo be a selector for the collection of these 

sets. Then, by the property of natural stratifications we have just recalled, Ye is 

a-discrete while f ( Y o )  is not, being a selector for the family {P~ : ~ E O}. This 

contradicts the assumption that f preserves a-discreteness. | 

2.3 Remark: Clearly, the assertion of Lemma 2.2 still holds true if {P~ : ~ < Wl} 

is only an acceptable stratification of X. In particular, if K is a copy of B(R1) 

in a metrizable space X and {P~ : ~ < Wl} is any acceptable stratification of X, 

then {K N P~ : ~ < wl} is an acceptable stratification of K.  

PERFECT SET THEOREMS OF A. H. STONE. In his work concerning the non- 

separable Borel theory [St72], A. H. Stone proved several theorems about closed 

embeddings of B(R1) into Souslin sets. The following result, based on Stone's 

ideas, is Theorem 4.1 in [ChGP95]. 

2.4 LEMMA: Let S be a Souslin set in a completely metrizable space X and let 

Y C S. I f  Y is not the union of countably many  locally separable sets, then S 

contains topologically a copy K of  B(R1) closed in X with K n Y dense in K .  

The ease Y = S is Stone's result from [St72, 3.4]. One can relax the assumption 

Y c S, getting in effect a Hurewicz-type result. This is done in Proposition 6.1. 
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2.5 Remark: If Y is a subset of a metrizable space X of weight R1, then Y is the 

union of countably many locally separable sets if and only if Y intersects only 

non-stationary many layers of some (and hence, of any) natural stratification of 

X,  cf. [Po78, Sec. 2.2]. 

A REMARK ON CONTINUOUS MAPPINGS OF B(R1)  INTO SEPARABLE METRIZABLE 

SPACES. The following observation made by D. Burke and the second author in 

[BP] will be useful in Section 4 (cf. (2) for the definition of Be). 

2.6 LEMMA: Let f:  B(R 0 --~ E be a continuous map into a separable metrizable 

space and let Z~ be a countable collection of  closed sets in E with { f - l ( F )  : F E 

Ze} covering the layer Be, for ~ < o)1. Then for all but non-stationary many  ~, 

there is an F C Z~ with the interior of f - l ( F )  in B(R1) intersecting B e. 

AN INDEPENDENT CANTOR SET LEMMA FOR CLOSED RELATIONS IN B(R1) .  

Let R C X • X be a symmetric relation in a space X. A set C C X is R- 

independent if (x, y) ~ R for any distinct x, y in C. 

The following lemma, a consequence of Lemmas 2.6 and 2.8 in [ChGP98], is a 

non-separable variation of an independent Cantor set theorem due to Mycielski 

[My641. 

2.7 LEMMA: Let R be a dosed symmetric  relation in B(R1). Then either there 

exists an open set W C B(I~I) with W x W C R, or else all but non-stationary 

many  layers B~ contain R-independent Cantor sets. 

3. R e s o l v a b l e  r a n k s  

A function (~: E --+ 0)1 will be called a rank on E; cf. [Ke94, p. 267]. We shall 

consider ranks which give rise to acceptable stratifications of metrizable spaces 

of weight ~1; cf. Definition 2.1. 

3.1 Definition: A rank 5: E --+ 0)1 on a Hausdorff space E is r e so lvab le  if there 

exists a continuous surjection 7r: M --+ E with completely metrizable domain 

such that  the layers (5 o Ir)-1({~}) form an acceptable stratification of M. We 

shall call such l r a  resolution for 5. 

It was noticed in [ChGP95, Sec. 2] that the rank 5: W O  -+ 0)1 which assigns 

the order type to well-ordered subsets of the rationals is resolvable. More gen- 

erally, the Lusin-Sierpifiski indices associated with Borel sieves are resolvable; 

cf. [ChGP95, 6.1]. Also, the Moschovakis' scales determine resolvable ranks, 

provided that  some modest regularity conditions are met; cf. Comment 7.2. 
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In this section we shall show that the ranks determined by Borel derivatives 

are resolvable. This can be demonstrated by combining the approach of Kechris 

and Louveau [KL89, proof of Theorem 4] (cf. also [Ke94, 34.E]) with some argu- 

ments in [ChGP95, 6.1]. We shall present, however, a more direct method giving 

the resolutions which allow a transfer of the partial order determined by Borel 

derivatives to a Souslin relation on the domain. This additional feature will be 

important in our proof of Theorem 1.2. 

We begin with an observation concerning the resolutions. 

3.2 Remark: Any map 7r: M --+ E as in Definition 3.1, but with completeness 

of M weakened to the assumption that M is absolutely Souslin, gives rise to a 

resolution for the rank 5: E --~ wl. 

Indeed, let M' C M x N N be an absolute G6-set projecting onto M, and let 

r  M' --+ M be the projection; cf. Section 2. Since r has separable fibers and it 

takes a-discrete sets to a-discrete sets, one can use Lemma 2.2 to conclude that 

7r o r  M ~ --+ E is a resolution for 5. 

For the rest of this section we shall fix a Borel derivative D: 2 x --+ 2 x on the 

hyperspace of a compact metric space. 

Adopting the notation introduced in Sections 1 and 2 let us define ~: 2 x x 

B(N1) -+ 2 x by 

(1) ~ ( K , s )  = D'~(S)(K), K e 2 x ,  s E B(R1). 

We shall check that for any B Borel in 2 X, 

(2) (I)--I(B) is Souslin in 2 x x B(R1). 

Since Borel sets in 2 X form a a-algebra generated by the sets {U) = {K E 2 x : 

K C U}, with U C X open in X, it suffices to show that for any U open in X, 

(3) ~ - l ( ( U ) )  is bi-Souslin in 2 x x B(R1). 

Let 

(4) V ( n , . )  = {~ e B ( S l ) :  s(n) = ,~). 

For any (K,s.) C 2 x • B(R1), r  = N~D~(n)+I(K) and the collection 

{D~('~)+I(K),: n E N} is well-ordered by the inclusion. Hence 

( I ) - I ( ( u ) )  = {(K, 8): N,~D~(n)+I(K) C U} = U,~{(K,s): D4n)+I(K) C U} 
= U n U o ~ < w l ( n a + l ) - l ( ( u ) )  x V(n,o~). 
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(9) 

"and 

(10) 

For each fixed n, the collection {V(n, a) : a < col} is discrete in B(R1) and each 

map D a : 2 x -+ 2 x is Borel. Therefore ~-I ( (U})  is a countable union of sets, 

each being a discrete union of Borel sets. This demonstrates (3) and completes 

the proof of (2). 

Consider 

(5) M = { (K , s ) :  a(K) = ~(s)}. 

Then 

(6) M is Soustin in 2 x x B(R1). 

To see this, let us notice that 2) = {L E 2 x : L ~ 0, D(L) = 0} is Borel in 2 x ,  

and, cf. (1), A/[ = O-I(D) .  Therefore, A/I is Souslin, by (2). 

Having established (6), we can now show that for 

(7) C = {K e 2 x :  0 < 5(K) < oo}, 

the rank 

(8) ~: s + wl is resolvable; 

cf. Comment 7.6. 

Let rr: A4 --+ s and r A4 --+ B(R1) be the projections onto the first and the 

second coordinate, respectively. Then, by (5), since ~(s) > 0 for s E B(R1), 

71"(./~) = 6--1({~ : 0 < ~ < CO1}) = . ~ ,  

( 5 0  T')--I({~}) = ~2-1(B{), for ~ > 0, 

where B~ are the layers of B(R1) defined in Section 2(2). 

Remark 3.2 combined with (6), (9), (10), and Lemma 2.2 applied to r 

demonstrate (8). 

We shall close this section with a verification that for the order ~ determined 

by the derivative D, and the projection 7r: M --+ s 

(11) ~ = {(u, v ) :  7r(u) ~ 7r(v)} is Souslin in A4 x A4. 

To this end, let us notice that the set G# = {(L,K)  : L = D#(K)},  i.e., the 

reflected graph of the flth iterate of D, is Borel, cf. Section 1, and that for any 

(L,t),(K,s) C M with L = D/3(K) we have D(L) ~ O, as 6(L) > O, and hence 

/3 < 5 ( K ) =  ~(s). 

Therefore, with V(n, a) defined in (4), one can write 
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G-~ { ( (L , t ) , (K , s ) )  E 3,4 x 3 d :  L = DZ(K),  g <_ s(n) for some n �9 N} 

= M • M n Un U~(U~_<~ G~ • B(~I) • V(~,~)), 

where <(L, t), (K, s)) is identified with <(L, K),  t, s). 

Since each collection {V(n,  a) : a < Wl} is discrete in B(R1), G is a a-discrete 

union of Borel sets in 3,t • M ,  which proves (11). 

4. P r o o f  o f  T h e o r e m  1.1 

We shall present a proof in a more general framework of resolvable ranks. Since, 

as was established in Section 3, the ranks determined by Borel derivatives are 

resolvable, Proposition 4.1 implies readily Theorem 1.1, in fact, with a slightly 

stronger assertion. 

4.1 PROPOSITION: Let 6: E -+ col be a resotv~ble rank on a separable metrizable 

space E, let A be a Souslin set in E and let Z C A intersect stationary many 

layers 6-1((~}). Then, for all but non-stationary many ~ E col, if  A A 6-1({~}) 

is covered by sets Fo, F1, . . .  closed in E, then some F,~ intersects simultaneously 

Z n Ua<( 6-1 ({'~}) and Z n O~>~ 6-~( {e } )  �9 

Proof: Let n: M -+ E be a resolution for the rank 6 and let 

(1) Y = ~r-l(Z). 

Using Remark 2.5 and Lemma 2.4 with S = 1r-l(A) one gets a copy K of 

B(R1) closed in M, such that 

(2) K = K A  Y C ~r-l(A). 

Let Y~ : K C/Y A Ua<~(6 o 7r)-l({a}), A(x) = min{~ : x �9 Y-~} for x �9 K,  and 

let us consider the natural stratification of K defined by A, as in Section 2(5). 

By Remark 2.a (el. also (4) in Section 2) there exists a e.u.b, set F such that,  

for any relatively open V in K,  

(3) V N (6 o 7r)-1({~}) r 0 implies V A Y N U (6 o ~r)-l({a}) # 0 for ~ E F. 
c~<( 

Having set a background, let us assume, aiming at a contradiction, that  for 

each ( in a stationary set O in C01 there exists a countable collection Ze of closed 

sets in E such that  A n 6-1({4}) C U:Ze and, for each F e Ze, either 

(4) F n z n U 6-1(b})  = o or F rl Z A U 5-1({a}) = 0. 
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Then, Lemma 2.6 applied to the restriction ~IK : K -+ E, the inclusion in (2), 

and Remark 2.3 provide ~ �9 O N F, F �9 Zr and a relatively open set V in K with 

U n  (5 o ~)-1({~}) r 0 and ~(V) C F.  

By (1) and (3), 

(5) FnZn  U 'f-l({a}):~0, 

and since V is non-separable, (2) implies that V N Y \ [.Jo<~(5 o 7c)- ' ({a}) r 0, 

hence, again by (1), also 

(6) F n Z n  U 5-1({a}) :~ 0. 
,~>~ 

However, (5) and (6) contradict (4), which completes the proof. I 

5. P r o o f  o f  T h e o r e m  1.2 

SOUSLIN QUASI-ORDERS ON B ( ~ I )  RESPECTING THE LAYER STRUCTURE. W e  

say that  a relation ~ is a quasi-order, cf. [KM76, II, w if it is reflexive and 

transitive, but  not necessarily strict, i.e., we allow both x -~ y and y ~ x for 

distinct x, y. A set C is a chain (an antichain) with respect to ___ if for any (for 

no) distinct x, y in C, x -4 y or y _ x. We say that  x, y have a common extension, 

if there is a z with x __ z and y -~ z. 

Let _ be a quasi-order on B(R1). We shall say that ~ is Souslin if 

(1) R = {(s,t) : s ~ t or t _~ s} is Souslin in B(R1) x B(lql), 

and we shall call ~ proper if 

(2) R a  = {(s, t) : s _ t and t -4 s} is closed in B(lql) x B(R1). 

Recall that  Be are the layers of B(R1) defined in Section 2(2). We shall say 

that  _~ respects the layer structure in B(R1) if there exists a c.u.b, set F in Wl 

such that  

(3) if {s, t} C B~ is an antichain and ~ �9 P, 

then s, t have no common extension, 

(4) s � 9 1 4 9  t h e n { t : t _ s } C  U if B~; 
~_<~ 

cf. [ChGP98, Sec. 5]. 
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5.1 Remark: Let K be a copy of B(R1) in B(R1). If -~ is a quasi-order on B(R1) 

satisfying (1)-(4), then the restriction of -< to K also satisfies (1)-(4), as by 

Remark 2.3 properties (3) and (4) do not depend on any specific choice of the 

homeomorphism of B(R1) onto K. 

5.2 LEMMA: Let -~ be a proper Souslin quasi-order on B(R1), respecting the 

layer structure in B(R1). Then either there is a stationary set of  layers, each 

containing a Cantor set which is an RA-independent -Z_-chain, or there is an 

~_-antichain intersecting all but non-stationary many layers in a Cantor set. 

Proof: The main idea of the proof is similar to that  in the proof of Lemma 5.2 in 

[ChGP98]. Assume that the first part of the alternative fails. We shall construct 

an antichain satisfying the conditions of the second part. 

Let K: denote the collection of closed subsets of B(R1) homeomorphic to B(R1) 

and let K E )C. We say that ~ splits K if there is an uncountable discrete 

collection J~g C K~ of subsets of K such that every selector for K: g is an ~- 

antichain. 

Assume first that  _ splits every element of ]C. This leads immediately to a 

sequence/Co, /C1,... of discrete subcollections of K: such that each K E K~-I  

contains uncountably many elements of ]Ca, /Ca refines ]Ca-l, each selector for 

t:,, is an antichain, and diam(K) < 1/n for K in tC~. Then L = N~ U ]C~ is a 

closed copy of B(R1) which is an -~-antichain. By Remark 2.3, L N B~ contains 

a Cantor set for all but non-stationary many 4. Thus the proof is completed in 

this case. 

Suppose now that  _~ does not split some K E ]C. To simplify the notation, 

assume that  K = B(I~I); cf. Remark 2.3. 

Observe that,  by (4), every open W C B(R1) with W • W C RA, cf. (2), is 

separable. Thus, by Lemma 2.7, for all but non-stationary many 4, there exists 

an RA-independent Cantor set C~ C B~. Furthermore, a theorem of Galvin, cf. 

[Ke94, 19.7], applied to R restricted to Cr yields, by (1), a Cantor set C'  which 

is either a _~-chain or it is an __-antichain. Since we assumed that the first part of 

the alternative in Lemma 5.2 is not true, we are left with all but non-stationary 

many C~ being the antichains. To simplify the notation we shall assume that  

(5) C~ C B~ is an ~ -antichain for ~ C F, 

where F has also the properties described in (3) and (4). 

For any compact set C C B(R1), let us put 

(6) R(C)  -- { t :  (s,t) e R for some s e C}. 
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Then R(C) is Souslin, being the projection of a Souslin set R n (C x B(R1)) 

parallel to the compact axis. 

For each a E F, let 

(7) Ca = {C c Ca : C is a Cantor set and R(C) intersects 

only non-stationary many layers B{}. 

Assume that  C~ ~ 0 for a E F. Choose C~ E Ca and let A~ be a c.u.b, set 

such that  

(s) for e Aa, R(C' )  n B e = 

Let A be the diagonal intersection of the sets Aa M F, cf. [Kun80, II, 6.14], i.e., 

A is a c.u.b, set such that 

(9) i f a < ~ ,  c~,~EA, t h e n ~ E A s .  

Then U{C~: ~ E A} is an -~-antichain. Indeed, by (5), all C~ are antichains, and 

(8) and (9) guarantee that if s E C~, t E C~, with (~ < ~ and (~,~ E h, then s 

and t are __-incomparable. 

Thus to finish the proof, it remains to consider the situation when there exists 

a ~ E P with C~ -- O. We shall show that this leads to a contradiction with our 

assumption that -~ does not split B(I~I). 

To this end, divide C~ into disjoint Cantor sets {Cr : r E 2N}. Since C~ = 0, 

by (7) and Stone's theorem, cf. 2.4 and 2.5, there exist Kr E ~ such that 

K~cR(C~) \UB~ ,  f o r r E 2  N. 

By (6), (4) and (3), every selector for the collection {g~ : r E 2 N} is an _- 

antichain. We shall find an uncountable discrete refinement of this collection 

consisting of elements of )~. 

Let d be a metric on B(R1). For each r E 2 N let FT- be an uncountable lint- 
discrete subset of Kr.  Fix a natural n and an uncountable set {ra : a < wl} C 2 N 

such that  n ~  -= n for ~ < Wl. By induction on a < ~1 we choose sa E F~. such 

that  the set {sa : c~ < Wl} is 1/2n-discrete. 

For each (~ < wl let L~ be a closed-and-open neighborhood of sa in K~. 

with diam(L~) < 1/6n. Clearly, La E ~ and the collection (La : (~ < Wl} is 

1/6n-discrete. Therefore B(~I)  is split, a contradiction ending the proof. I 

Proof of Theorem 1.2: As in Section 4, we shall present a proof in the framework 

of resolvable ranks. The generality does not complicate the matter,  enabling us 
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to encompass the corresponding result for Lusin's constituents [CHOP98, Propo- 

sition 5.3]; cf. also Comment 7.1. 

Let 5: E -+ wl be a resolvable rank. We shall say that a partial order _ on E is 

resolvable simultaneously with the rank 6 if there exists a resolution 7r: M -+ E 

for 5 such that  

(10) {(u,v) E M x M :  rr(u) _~ 7r(v)} is Souslin in M x M. 

If the partial order _~ and the rank 5 are determined by a Borel derivative 

D: 2 X -+ 2 X, cf. Section 1, then, by Section 3(8),(11), _ is resolvable simulta- 

neously with 5 on g. Moreover, the initial segments {D~(K) : a < 5(K)} of _ 

on $ are linearly ordered by _~ and 5 is non-decreasing with respect to _-<. Thus 

Proposition 5.3 below implies Theorem 1.2. 

5.3 PROPOSITION: Let 5: E --~ wl be a resolvable rank on E and let -~ be a 

partial order on E resolvable simultaneously with 5. I f  the initial segments of  ~_ 

are countable and linearly ordered by ~_, and 5 is non-decreasing with respect 

to ~_, then each Souslin set A C E intersecting stationary many  layers 5-1({~}) 

contains an ~_-antiehain intersecting all but non-stationary many  layers (~-1 ({~}) 

in a Cantor set. 

Proof'. Let 7r: M -+ E be a resolution for 5 satisfying (10) and let A be a Souslin 

set in E intersecting stationary many layers 5-i({~}). Then S = 7r-i(A) is a 

Souslin set in M and by 2.5 and 2.4 there exists an embedding h: B(lql) -+ S. 

Consider the quasi-order _ on B(Ni) defined by 

( l l )  _ t iff o h)(s) ( .  o h)(t). 

By Remark 2.3 applied to K = h(B(R1)), _ is a quasi-order respecting the layer 

structure of B(R1). Condition (10) implies that  _-At satisfies (1), and the continuity 

of zr o h gives (2). Thus _ satisfies the assumptions of Lemma 5.2. 

If a Cantor set C in B(R1) is Rh-independent, where RA is the relation given 

by (2), then zr o h maps C injectively onto a Cantor set H C A. Observe that,  

by (11), C is a __-chain (antichain) exactly when so is U. 

By (10) and (11), the set {(x, y) E H x H :  x -< y} is analytic as the continuous 

image of the restriction of _ in B(Ni) to C • C. Since the initial segments of _ 

on E are countable, the relation -_<_ restricted to H x H is of the first category, 

by the Kuratowski-Ulam theorem, cf. [Ku66, w VI]. It follows that  H is not 

a ~-chain and consequently, the first part of the alternative in the assertion of 
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Lemma 5.2 is false. We are left with the second part of the assertion, which, in 

view of Remark 2.3, implies the assertion of Proposition 5.3. I 

6. Hurewicz-type results 

The assertion of Proposition 4.1 yields the following Hurewicz-type result: for 

all but  non-stationary many ~ there exists a Cantor set C~ C (A N 6-1({~})) U Z 

with both C~ N U~<~ (f- l({a}) and C~ N U~>~ (f-l({a}) countable and dense in 

To get such Cantor sets, one can apply a variation of a Kechris-Louveau- 

Woodin theorem [Ke94, 21.22] described in [MP95]. Alternatively, one can also 

follow the idea of Solecki's proof of this theorem [So94, Corollary 8] (notice that  

one can replace in this proof the use of [So94, Theorem 1] with some more direct 

arguments). Along these lines, we shall refine now Lemma 2.4 by relaxing the 

assumption that  Y C S, and we shall use this result to indicate some variation 

of Proposition 4.1 with Z not necessarily contained in A. In our proof, Stone's 

techniques will be combined with some ideas from [So94, Corollary 8]. 

Let Q = {s E B(lql) : the support of s is finite}. In the sequel we shall 

concentrate on Q, but, in fact, any dense a-discrete subset of B(lql) can be used 

to the same effect; cf. Comment 7.7. 

6.1 PROPOSITION: Let S be a Souslin set in a completely metrizable space X 

and let Y C X .  Then either there exists an F~,-set F disjoint from Y such that 

S \ F can be decomposed into countably many locally separable sets, or else 

there exists a homeomorphic embedding h orB(R1) onto a closed in X subset of  

S U Y with h(Q) c Y and h(B(R1) \ Q) c S. 

Proof." Put  X / ~- X X 2 N and let r X ~ -+ X be the projection, S' a G~-subspace 

of X '  with r  = S, and Y' = r  

L e t Z - -  {W c X  1 : W A S  ~ = 0 o r W n Y ~ = 0 }  and l e t Z  * be the collection 

I enriched by separable subsets of X ~. By a standard transfinite exhaustion 

procedure, cf. [St63, Theorem 4'], one can write X ~ = K U J,  where J is the 

union of a a-discrete subcollection of closed sets from I* ,  and K is a closed set 

with no nonempty relatively open subset in Z*. If K is empty, then the first part 

of the alternative holds. Otherwise, K is nowhere locally separable, 

(1) H = K N Y '  is dense in K 
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and 

(2) G = K n S'  = n Gn with Go D G1 D --. open and dense in K. 
n>0 

Let n _> 0, let U be open in K and let x0 E U n H.  Since no nonempty open 

set in K is separable and r is perfect, there exist, for 0 < ~ < wl, xr E U N G~ 

such that  {r : ~ < wl} is discrete in X as an indexed collection of singletons. 

Thus we can find a family /4  -- {U~ : ~ < Wl} of open subsets of K such that  

x5 E U5 C U~ C U for ~ < a~l, U5 C G~ for ~ > 0, and r = {~b(Us) : ~ < Wx} 

is discrete in X.  Finally, we define Y0 = x0 E U0 n H and we use (1) to choose 

y~ E U~NH for ~ > 0. 

Therefore, start ing with n = 0, U(0) = K and arbitrary y(0) E H we can 

define, by repeating the above observation, collections/An = {U(r)  : r E (Wl) n } 

of open subsets of K with mesh(/4n+l) <_ 1/(n + 1), the closures of/4n+1 in K 

refining/4n, and ~,b(/4~) discrete in X. Moreover, in the inductive construction 

we fix, for each T, a point y(r) E U(T) N H and we make sure that  

( a )  = e 

(4) U ( r ~ )  C Gir I for ~ > O, 

where It] denotes the length of r .  

Let f :  B(R1) --+ K be defined by the condition f(t)  E nn>_o U(t[n). Then 

L = f (B(R1))  = nn_>0[J/4n is a closed in K copy of B(R1) and h = r o f is 

a homeomorphic embedding of B(R1) onto a closed subset of X.  By (3) and 

(1), f(Q) c H c Y', therefore h(Q) c Y. If t E B ( R 1 ) \ Q ,  then (4) gives 

U(tln+ 1) C Gn for infinitely many n, hence by (2), f(t)  E G C S', consequently 

h(t) E S and the proof is completed. | 

If  the space X in Proposition 6.1 has weight R1, then we get, cf. [ChGP95, 

Theorem 1.2], 

6.2 COROLLARY: Let S be a Souslin set in a completely metrizable space X 

of weight HI, let {P~ : ~ < 021} be a natural stratification of X,  and let Y C 

X.  Then either there is an F~-set disjoint from Y and containing all but non- 

stationary many layers S N P~, or else for MI but non-stationary many ~, any 

F~-set containing S N P~ intersects Y n U~<~ P~. 

Proof." Suppose that  the first part  of the alternative fails. By Remark 2.5, the 

first par t  of the alternative in Proposition 6.1 is not true, and we are left with 
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the second part. Let ~ be a countable limit ordinal. Observe that the layer B~ 

defined in Section 2(2) is a dense G~ in U~<~ B~ and Q A U~<~ B~ is dense in 

U~_<~ B~. By the Baire category theorem, each Fo-set in B(~I)  containing B~ 

intersects QNU~<~ B~. Since B~ C B(R1) \ Q, Remark 2.3 gives the second part 

of the alternative. | 

Corollary 6.2 suggests some variations of Proposition 4.1 with Z being not 

necessarily a subset of A. 

For example, let ~: E --+ ~1 be a resolvable rank, on a separable metrizable 

space E,  let A, Z be a pair of subsets of E with A Souslin in E. Furthermore, 

suppose that  there exists a resolution ~: M --+ E for ~ such that,  for X = M, 

S = r - l ( A )  and Y = r - l ( Z ) ,  the first part of the alternative in Corollary 6.2 

fails. Then the second part of the alternative can be used to obtain an analogue 

of Proposition 4.1. 

It would be interesting to get results in this direction not involving explicitly 

the resolutions. We finish this section with a brief description of an example 

exhibiting some essential difficulties in applying the above approach to this end. 

6.3 Example: Let W O  be the space of well-ordered subsets of the rationals, 

and let WO~ = {A E W O  : type(A) = ~} be the ~th constituent; cf. In- 

troduction. Let us define a rank ~ on W O  x W O  by the formula ~(A, B) = 

max{type(A), type(B)}. 

Then .A ---- {(A,B) E W O  • W O  : type(A) ~ type(B)} is Souslin, but not 

Borel in W O  • WO;  cf. [Ke94, 34.C], [Ka81, Theorem 4]. 

However, if a: B(RI) --+ W O  is the standard resolution considered in [ChGP95, 

Sec. 2], then ~: B(}~I) •  --+ W O •  is a resolution for ~ such that ~ - I (A )  

is an F~-set in B(N1) x B(RI); cf. [Po79, Lemma 1]. 

Using the Continuum Hypothesis one can select points p~ C WO~ x WO~ in 

such a way that  A cannot be separated from Z -- {p~ : ~ < Wl) by any F~oset; 

cf. [Ka81, Theorem 4]. It is not clear if, for every such choice of Z,  the assertion 

of Proposition 4.1 is true for the pair ,4 and Z. 

7. Comments 

7.1 GENERALIZATIONS OF THEOREMS 1.1 AND 1.2. 

Another classical rank related to the Cantor-Bendixson derivative D: 2 x --+ 

2 x is 5~: 2 X --+ Wl, which associates to every K E 2 x the minima] ~ with 

D~+I(K)-= D~(K). This can be put in the following more general framework. 
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Let /3 C 2 X be a Borel set. Then a Borel derivative D: 2 X --+ 2 x determines 

a rank 5~3: $ -+ Wl, where E is the set of all K C 2 x such that  D ~ ( K )  E B 

for some ~, and (i/~(K) is the minimal ~ with that  property. In the case of the 

Cantor-Bendixson derivative, the rank (i corresponds to the collection B of finite 

sets, and the rank (i* corresponds to the collection/3 consisting of all perfect sets 

and the empty  set. The arguments from Section 3 can be readily applied also in 

this situation. 

To show that  (ie3: $ --+ wl is a resolvable rank, adopt the notation from Section 

3 and consider AJ = {(K,s)  �9 2 x x B(R1) : (i•(K) = ~(s)}; cf. (5). Then 

BA C (I)-1(/3) C { ( K , s ) :  (IB(K) < a(s)}; cf. (1). As {(K,s)  : (its(K) < a(s)} = 

[J,~ U,~<,ol [J~<_~(D~)-'(B) x Y (n ,  ce) is the union of a a-discrete collection of 

Borel sets, (2) implies that  A4 is Souslin in 2 z • B(iql); cf. (6). Thus one can use 

the projection 7r: 2t4 -+ $ and Remark 3.2 to get a resolution for (iB; cf. Comment  

7.6. 

Moreover, if we assume that  Dn(B)  C /3 for ~ < wl, the justification of 

condition (11) remains valid for the set Ad determined by (lB. It  follows that  

the partial order -< generated by D is resolvable simultaneously with (i~3. Since 

(iz3 is then non-decreasing with respect to _-<, the assumptions of Proposition 5.3 

are satisfied by the rank determined by the set/3. 

Furthermore,  the compactness of X can be relaxed to a-compactness.  

Indeed, suppose that  X is a a-compact  metrizable space and let 2 x denote the 

set of all closed subsets of X with the Effros Borel structure; cf. [Ke94, 12.8]. 

Fix a function D: 2 X -+ 2 z which is Borel and monotone. Since the Effros 

Borel a-algebra in 2 X is generated by the sets (U) = {K �9 2 x : K C U}, 

with X \ U compact,  it follows that  all iterations D~: 2 X -9 2 x are Borel and, 

moreover, (I): 2 x • B(R1) -9 2 X defined by formula (1) in Section 3 satisfies (2) 

in Section 3; cf. [Ke94, 34.11]. 

As before, the arguments from Section 3 show that  each rank (is determined 

by D and a Borel set /3 C 2 x (closed with respect to all countable iterations 

of D) is resolvable (and satisfies the assumptions of Proposition 5.3). Thus we 

can use Propositions 4.1 and 5.3 to obtain the corresponding generalizations of 

Theorems 1.1 and 1.2. 

7.2 SEMISCALES WHICH DETERMINE RESOLVABLE RANKS. 

Let E be a subset of a completely metrizable separable space X.  Following 

[Ke94, p. 300] we shall call a function qo: E -+ B(lql) a s e m i s c a l e  provided 

xi --+ x with xi c E and qo(xi) -9 s, imply x C E. We shall consider in the sequel 
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semiscales satisfying in addition 

(.)  if xi --+ x with x~ e E and ~(xi) --4 s, then n(~(x))  <_ n(s), 

where the function n: B(R1) ~ O)l was defined in Section 2(1). The condition (*) 

is weaker than the semicontinuity which distinguishes the scales among semis- 

cales; el. [Ke94, 36.2]. 

PROPOSITION: Let 9~: E --+ B(NI) be a semiscale with property ( . )  and let 

~ :  E --4 o)1 be detined by 5~(x) = n(~(x)) .  I f  the fibers 6~1({~}) are absolutely 

Borel, then the rank ~ is resolvable. 

We shall sketch a proof of this fact. Let X be the completely metrizable 

extension of E and let G(~) be the closure of the graph of ~ in X • B(R1). 

Then, ~ being a semiscale, G(~) projects onto E. Consider M = {(x,s) E G(~) : 

5~(x) = n(s)}. The condition (*) implies that G(~) C {(x,s) : /i~(x) ~ n(s)}. 

Hence, arguing as in Comment 7.1, one can show that M is Souslin in X x B(R1) 

and 5~ is a resolvable rank. 

7.3 SOME CONCRETE RANKS RELATED TO THE CA N TO R-BEN D IX SO N  

DERIVATIVE. 

Let D: 2 X --4 2 x be the Cantor-Bendixson derivative and let 5:2 x --4 wl t2{oc} 

be the Cantor-Bendixson rank determined by D. Hurewicz [Hu30] defined a 

concrete open sieve through which the complement of s = {K : (~(K) r  

is sifted and showed that the corresponding Lusin-Sierpifiski index of K C s 

is closely related to the Cantor-Bendixson rank (~(K). Still, the resolutions for 

Lusin-Sierpifiski indices constructed in [ChGP95, 6.1] seem not enough to get the 

assertions of Theorems 1.1 and 1.2 for the Cantor-Bendixson derivative directly 

from Hurewicz's results. 

An interesting approach to the Cantor-Bendixson derivative, due to Kechris 

and Louveau, is presented in [Ke94, 36.G.3]. This approach can be modified to 

get a scale which, by Comment 7.2, gives in effect a resolution for the Cantor-  

Bendixson rank. However, there are some difficulties in extending this method 

to the case of more general derivatives, and also more adjustments are needed to 

get in this way resolutions suitable for Theorem 1.2. 

7.4 AN INCREASING SEQUENCE OF Bah SETS WHICH DETERMINES A RESOLVABLE 

RANK. 

Let A = {a(a) : a < wl} be a subset of the irrationals P of eardinality b~l 

enumerated without repetitions. Let E -- A N C pN,  and let 5: E --+ wl be 

defined by 5(a(ao) ,a (a l ) , . . . )  = min{a : a,~ < a for all n}. 
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The rank 5 is resolvable. Indeed, the map 7r: B(N1) -+ E defined by 

7r(ao, a l , . . . )  = (a(ao), a(al) , . . . )  satisfies 5 o n = n, thus 7r is a resolution for 5; 

cf. Section 2(1),(2). 

The sets A~ = {a(a)  : ~ < (} are countable, hence E( -- A T are F~ - se t s  in 

pN.  The increasing sequence E1 C . .-  C E( C . . .  determines the rank 5, as 

5(x) = min{~ : x E E~} for x C E. 

If we require in addition that  A is a rarefied set [Ku66, w III], then the 

sets E~ are relatively G~-sets in E. In this case the rank 5 is determined by an 

increasing wl-sequence of G~-sets in E.  

However, if E is a separable metric space, then no resolvable rank 5: E -+ wl 

with 5(E) s tat ionary can be determined by an increasing wl-sequence of F~-sets 

in E; cf. Proposit ion 4.1. 

The rank n: B(lql) --+ Wl with the resolution id: B(R1) -+ B(I~I) show that  

separability of E is essential in Proposition 4.1 (and also in Lemma 2.6). Still, for 

resolvable ranks 5 on an arbitrary Hausdorff space E,  the part  of the assertion 

concerning non-separation "from below" is valid, and, in effect, almost every layer 

contains a Cantor set. 

7 .5  BOREL RESOLUTIONS. 

Let ~(R1) be the space of all functions x: wl -+ N with countable support ,  

equipped with the pointwise topology, i.e., ~(R1) is the F~-product of R1 copies 

of natural  numbers. For x C Z(RI), let 5(x) be the minimal ordinal a such tha t  

x is zero on the interval [a, Wl). 

In [ChGP98, Sec. 4] a eorel  surjection 7r: B(R1) -+ ~(R1) was constructed with 

all the properties required in the definition of a resolution for the rank 5 except 

the continuity of 7r. The parametrizat ion 7r is useful in analyzing Souslin sets in 

~(R1). However, the rank 5: Y](R1) --~ 031 has no resolution. In fact, the space 

of countable ordinals Ld 1 with the order topology embeds in ~(N1) as a closed 

subspace so that  5 is the identity on wl, and the identity on wl is not resolvable; 

cf. the last s tatement  in 7.4. 

7 .6  OMITTING SOME LAYERS BY RESOLUTIONS. 

The resolution for the rank 5 defined in Section 3(8) neglects the Borel set 

5 -1({0}). Although the omission (even of non-stationary many layers) makes no 

difference in our arguments,  one can easily fill the gaps contained in analytic sets 

(in non-stat ionary many layers) by using a surjection from the free union of the 

irrationals added to the domain of the resolution. 
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7.7 REMARKS ON PROPOSITION 6.1. 

The choice of the a-discrete dense set in B(R1) in Proposition 6.1 is inessential. 

Indeed, for any a-discrete dense subset T of B(R1) there exists a homeomorphism 

of B(lql) onto B(R1) mapping T onto Q. 
Since no first category subset of B(lql) contains stationary many layers B~, the 

two conditions in Proposition 6.1 cannot be satisfied simultaneously. 
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