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ABSTRACT

A Borel derivative on the hyperspace 2% of a compactum X is a Borel
monotone map D : 2X — 2X. The derivative determines a Cantor—
Bendixson type rank & : 2%X — wy U {co}. We show that if A C 2% is
analytic and Z C A intersects stationary many layers 6 " 1({¢}), then for
almost all £, AN§~1({¢}) cannot be separated from ZﬂUa<E §-1{a})
(and also from Z N Ua>€ 51 ({a})) by any F,-set. Another main result
involves a natural partial order on 2% related to the derivative. The re-
sults are obtained in a general framework of “resolvable ranks” introduced
in the paper.

1. Introduction

Let 2% be the hyperspace of a compact metric space X, i.e., the space of compact
subsets of X with the Hausdorff metric, cf. [Ku66, §21, VII].

A Borel derivative on 2X is a Borel map D: 2X — 2X which is monotone, i.e.,
D(K) C K for K € 2%.

An important example of a Borel derivative is the Cantor-Bendixson derivative
D(K) = K', where K’ is the set of accumulation points of K, cf. [Ku68, §43,
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VIII, 2]. An illuminating presentation of Borel derivatives is given by Kechris
[Ke94, 34].

For a Borel derivative D: 2% — 2% the ath iterated derivative D®: 2X — 2X
is defined inductively as follows: D°(K) = K, D**(K) = D(D*(K)) and
D*(K) = Np<a DP(K), for limit a. Each D* is a Borel map [Ku68, §43, 1], cf.
also [CM83], where the Borel complexity of the iterations is investigated.

The rank 6 : 2% — w; U{oo} determined by a Borel derivative D on 2% assigns
to a compact set K in X the minimal £ with D¢+1(K) = §, if such a ¢ exists, or
o0, if DS(K) # 0 for all £.

The following theorem is one of the main results of this paper (the terminology
is explained in Section 2):

1.1 THEOREM: Let 6: 2X — w; U {oo} be the rank determined by a Borel
derivative D: 2X — 2%, Let A be an analytic set in 2% and let Z C A intersect
stationary many layers §~1({¢}). Then, for all but non-stationary many £ € wy,
each F-set containing AN~ ({€}) intersects both sets ZNJ, .. 0 ({a}) and
zn Ua>§ 5_1({(1}).

For each ¢ satisfying the assertion of Theorem 1.1, the analytic set ANS~1({¢})
is uncountable, hence it contains a Cantor set. Some stronger conclusions along
this line are established in Theorem 1.2 below.

A result analogous to Theorem 1.1 (with a somewhat weaker assertion) was
obtained in a joint paper by G. Gruenhage and the authors [ChGP95, Corollary
1.3] for the rank 6: WO — wq, where WO is the space of well-ordered subsets of
the rationals Q and §(A) is the order type of A in WO. In this case the layer
571({¢}) is the &th Lusin’s constituent WO, cf. [Ku66, §3, XV], [Ke94, 27.C,DJ.

The set WO has a natural partial order <, see [Ku66, §30, XII (1)], and it
was proved in [ChGP98, Proposition 5.3] that any Souslin set in WO intersecting
stationary many constituents WO, contains an <-antichain intersecting all but
non-stationary many constituents in a Cantor set.

The next theorem provides a counterpart to this result for the Borel derivatives,
where we associate with a Borel derivative D: 2X — 2% a partial order < on 2%
defined by

L=< K iff L=D%K) for some c.

1.2 THEOREM: Let D: 2%X — 2% be a Borel derivative and let < and 8 be the
partial order and the rank determined by D. Then each analytic set A C 2%
intersecting stationary many layers §~1({£}) contains an <-antichain intersecting
all but non-stationary many layers §~1({¢}) in a Cantor set.
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Our proofs will be based on the fact (proved in Section 3) that for any Borel
derivative D: 2% — 2% there is a continuous map m: M — 2% from a complete
metric space of weight R; such that the layers (6 o )~ ({¢}) form a “natural
stratification” of M; cf. Section 2. This allows one to use non-separable Borel
theory in M, notably some variations of A. H. Stone perfect set theorems, to get
in effect Theorems 1.1 and 1.2.

Such an approach was originated in [ChGP95, ChGP98] to obtain the above-
mentioned results about Lusin’s constituents.

It is useful to carry out the arguments involving non-separable Borel theory
in a more general setting, considering ranks §: F — w; which admit continuous
parametrizations 7: M — E on completely metrizable spaces of weight Ry with
the layers of 6 o m: M — w; forming appropriate stratifications of M. We shall
call such ranks resolvable.

In Section 2 we clarify the terminology and we set some background for further
discussion. In Section 3 we introduce the notion of resolvable ranks and we check
that the rank determined by a Borel derivative is resolvable. Then, in Sections
4 and 5, we establish several facts about resolvable ranks which imply Theorems
1.1 and 1.2, respectively. In Section 6 we prove a Hurewicz-type result hinting
at some possible extensions of Theorem 1.1. The last section contains some
additional information concerning the subject of this note. In particular, we
provide there more examples of resolvable ranks and we generalize Theorems 1.1
and 1.2 to the class of o-compact spaces. Some other results involving resolutions
for Lusin-Sierpifiski indices on coanalytic sets can be found also in [ChP].

2. Terminology and some auxiliary facts

SOUSLIN AND ANALYTIC SETS. Let X be a topological space. A set S C X is
Souslin in X if there is a Borel set B in the product X x NN by the irrationals
which projects onto S.

Let X be metrizable. Then B in the definition of Souslin sets can be chosen
as a Gs-set. The sets in X which are Souslin in a completion of X {(no specific
completion makes a difference) are called absolutely Souslin; in this case B can be
chosen completely metrizable, i.e., an absolute Gs-set. If both S ¢ X and X N\ §
are Souslin, S is called bi-Souslin. If X is a separable completely metrizable
space, the Souslin sets in X coincide with the analytic sets in X, i.e., continuous

images of the irrationals, and the bi-Souslin sets are Borel, cf. [Ku66, Ke94,
Ha92].
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STATIONARY SETS IN wi. A set of countable ordinals I' C wy is stationary if I’
intersects each c.u.b. set in wy, i.e., each closed unbounded set, cf. [Kun 80, II,
§6]. We shall say that a property P () holds true for all but non-stationary many
ordinals £ in w; if the set of ordinals £ for which P(£) fails is non-stationary in
w.

NATURAL STRATIFICATIONS OF METRIZABLE SPACES OF WEIGHT RN;. The
Baire space B(R;) is the countable product of the discrete space of cardinality
R;. The points of B(R;) are functions s: N — w; and we let

(1) k(s) = min{a : s(N) C [0, )},
(2) B = 571 ({€}).
Then
(3) U B, is separable and closed for ¢ < wy,
agg
and
(4) |J Ba = |J Ba for limit &
a<{ a<§

Let X be a metrizable space of weight Ry, let {z, : @ < w1} be dense in X,
Mz) =min{{ : z € {zo : o < £}}, and let

(5) Pe =X271({€}).

Then {P¢ : £ < w1} is a decomposition of X satisfying (3) and (4) with B,
replaced by P,. Each such decomposition will be called a natural stratification
of X. For any two natural stratifications {P; : { <w:} and {P{: { <wi} of X,

(6) P;=PF;and U P, = U P! for all but non-stationary many ¢;
a<f a<§

cf. [Po78], [ChGP95, 4.3]. In particular, the statements of the form “non-
stationary many layers of X have property P” do not depend on a specific choice
of a natural stratification of X. We shall rely on this fact omitting as a rule any
reference to a concrete natural stratification of X.

It will be convenient to deal with a more flexible class of decompositions of X.
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2.1 Definition: A decomposition {F; : £ < w;} of X is an acceptable strati-
fication of X if it satisfies (6) for some (and hence, for an arbitrary) natural
stratification {P; : £ < wq} of X.

Before establishing yet another useful fact, let us recall that if Y is a selector
for a natural stratification, then o-discrete subsets of ¥ are exactly the ones
intersecting only non-stationary many layers; cf. [Po78, Sec. 2.3].

2.2 LEMMA: Assume that f: X’ — X is a continuous mapping between metriz-
able spaces, f~1(x) is separable for x € X, and f(F) is o-discrete for any o-
discrete set F C X'. If {P¢ : &€ < wi} is a natural stratification of X then
{P{: & <uwi}, where P; = f7Y(Pe) for &€ < wy, is an acceptable stratification of
X'.

Proof: Observe that {P{ : { <w} satisfies (3) with B, replaced by P,. Hence
the layers (5) of A defined by A(z) = min{¢ : z € Ua<£ P!} form a natural
stratification of X’.

It suffices to show that U, . Po = = Uyee P <¢ P4 for all but non-stationary many
& cf. (4). Indeed, in this case, the layers of A witness that {F; : £ < wi} is
acceptable.

Suppose that for £ in a stationary set © in w; the sets |, <¢ P Ua < P =

1({¢ + 1}) are nonempty, and let Yo be a selector for the collection of these
sets. Then, by the property of natural stratifications we have just recalled, Yg is
o-discrete while f(Yg) is not, being a selector for the family {P; : £ € ©}. This
contradicts the assumption that f preserves o-discreteness. |

2.3 Remark: Clearly, the assertion of Lemma 2.2 still holds true if {Pg : § < w1}
is only an acceptable stratification of X. In particular, if K is a copy of B(R;)
in a metrizable space X and {P; : { < wy} is any acceptable stratification of X,
then {K N P; : £ < w1} is an acceptable stratification of K.

PERFECT SET THEOREMS OF A. H. STONE. In his work concerning the non-
separable Borel theory [St72], A. H. Stone proved several theorems about closed
embeddings of B(R;) into Souslin sets. The following result, based on Stone’s
ideas, is Theorem 4.1 in [ChGP95].

2.4 LEMMA: Let S be a Souslin set in a completely metrizable space X and let
Y C S. IfY is not the union of countably many locally separable sets, then S
contains topologically a copy K of B(R;) closed in X with K NY dense in K.

The case Y = § is Stone’s result from [St72, 3.4]. One can relax the assumption
Y C S, getting in effect a Hurewicz-type result. This is done in Proposition 6.1.
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2.5 Remark: IfY is a subset of a metrizable space X of weight X1, then Y is the
union of countably many locally separable sets if and only if Y intersects only

non-stationary many layers of some (and hence, of any) natural stratification of
X, cf. [Po78, Sec. 2.2].

A REMARK ON CONTINUOUS MAPPINGS OF B(X;) INTO SEPARABLE METRIZABLE
SPACES. The following observation made by D. Burke and the second author in
[BP] will be useful in Section 4 (cf. (2) for the definition of By).

2.6 LEMMA: Let f: B(Ry) — E be a continuous map into a separable metrizable
space and let Z; be a countable collection of closed sets in E with {f}(F): F €
T} covering the layer Bg, for £ < wy. Then for all but non-stationary many &,
there is an F' € T; with the interior of f~!(F) in B(Ry) intersecting Be.

AN INDEPENDENT CANTOR SET LEMMA FOR CLOSED RELATIONS IN B(X;).
Let R C X x X be a symmetric relation in a space X. A set C C X is R-
independent if (z,y) € R for any distinct z,y in C.

The following lemma, a consequence of Lemmas 2.6 and 2.8 in [ChGP98], is a
non-separable variation of an independent Cantor set theorem due to Mycielski
[My64].

2.7 LEMMA: Let R be a closed symmetric relation in B(Ry). Then either there
exists an open set W C B(X;) with W x W C R, or else all but non-stationary
many layers By contain R-independent Cantor sets.

3. Resolvable ranks

A function §: E — w; will be called a rank on E; cf. [Ke94, p. 267]. We shall
consider ranks which give rise to acceptable stratifications of metrizable spaces
of weight R;; cf. Definition 2.1.

3.1 Definition: A rank §: E — w; on a Hausdorff space E is resolvable if there
exists a continuous surjection 7: M — FE with completely metrizable domain
such that the layers (6 o m)~1({¢}) form an acceptable stratification of M. We
shall call such 7 a resolution for 4.

It was noticed in [ChGP95, Sec. 2] that the rank §: WO — w; which assigns
the order type to well-ordered subsets of the rationals is resolvable. More gen-
erally, the Lusin-Sierpifiski indices associated with Borel sieves are resolvable;
cf. [ChGP95, 6.1]. Also, the Moschovakis’ scales determine resolvable ranks,
provided that some modest regularity conditions are met; cf. Comment 7.2.
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In this section we shall show that the ranks determined by Borel derivatives
are resolvable. This can be demonstrated by combining the approach of Kechris
and Louveau [KL89, proof of Theorem 4] (cf. also [Ke94, 34.E]) with some argu-
ments in [ChGP95, 6.1]. We shall present, however, a more direct method giving
the resolutions which allow a transfer of the partial order determined by Borel
derivatives to a Souslin relation on the domain. This additional feature will be
important in our proof of Theorem 1.2.

We begin with an observation concerning the resolutions.

3.2 Remark: Any map m: M — F as in Definition 3.1, but with completeness
of M weakened to the assumption that M is absolutely Souslin, gives rise to a
resolution for the rank é: £ — w;.

Indeed, let M’ C M x NN be an absolute Gs-set projecting onto M, and let
¥: M’ — M be the projection; cf. Section 2. Since 3 has separable fibers and it
takes o-discrete sets to o-discrete sets, one can use Lemma 2.2 to conclude that
mo: M — E is a resolution for 4.

For the rest of this section we shall fix a Borel derivative D: 2% — 2% on the
hyperspace of a compact metric space.

Adopting the notation introduced in Sections 1 and 2 let us define ®: 2% x
B (Rl) g 2X by

(1) ®(K,s) = D"(K), Ke2X, se B(R).
We shall check that for any B Borel in 2%,
(2) ®~1(B) is Souslin in 2% x B(R;).

Since Borel sets in 2% form a o-algebra generated by the sets (U) = {K € 2% :
K Cc U}, with U € X open in X, it suffices to show that for any U open in X,

(3) &~ 1((U)) is bi-Souslin in 2% x B(Ry).
Let
(4) V(n,a) = {s € B(Yy): s(n) = a}.

For any (K,s) € 2X x B(%;), ®(K,s) = (), D*™*(K) and the collection
{D*(™+1(K),: n € N} is well-ordered by the inclusion. Hence
d-1(U)Y) = {(K,s) : N, D*V+YK) c U} = U, {(K,s) : DS™HYK) Cc U}
= Un Uacu, (D) 7H(0)) x V(n, ).
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For each fixed n, the collection {V{(n,a) : @ < w;} is discrete in B(X;) and each
map D® : 2%X — 2% is Borel. Therefore ®~!((U)}) is a countable union of sets,
each being a discrete union of Borel sets. This demonstrates (3) and completes
the proof of (2).

Consider
(5) M= {(K,s): (K) = k(s)}.
Then
(6) M is Souslin in 2% x B(X;).

To see this, let us notice that D = {L € 2X : L # 0, D(L) = 0} is Borel in 2%,
and, cf. (1), M = ®~}(D). Therefore, M is Souslin, by (2).
Having established (6), we can now show that for

(7) E={K ec2¥:0<§K)< o},
the rank
(8) d: &€ = w is resolvable;

cf. Comment 7.6.
Let m: M — £ and 9: M — B(X;) be the projections onto the first and the
second coordinate, respectively. Then, by (5), since x(s) > 0 for s € B(X,),

9 a(M)=6"1{€:0<E<wi}) =&,
and
(10) (Bom) ' ({€}) =v ' (Be), for >0,

where Be are the layers of B(R;) defined in Section 2(2).

Remark 3.2 combined with (6), (9), (10), and Lemma 2.2 applied to 1,
demonstrate (8).

‘We shall close this section with a verification that for the order < determined
by the derivative D, and the projection m: M — £,

(11) G = {(u,v) : m(u) X w(v)} is Souslin in M x M.

To this end, let us notice that the set Gg = {(L,K) : L = DP(K)}, i.e., the
reflected graph of the fth iterate of D, is Borel, cf. Section 1, and that for any
(L,t),(K,s) € M with L = DP(K) we have D(L) # 0, as (L) > 0, and hence
B < §(K) = k(s).

Therefore, with V(n, a) defined in (4), one can write
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G={((L.t),(K,s)) e M x M : L =DP(K), B < s(n) for some n € N}
= M X M ﬂUn Ua(UﬁSa gﬂ X B(Nl) X V(n’a))v

where {(L,t), (K, s)) is identified with ((L, K),¢,s).
Since each collection {V(n,a) : @ < wy} is discrete in B(R;), G is a o-discrete
union of Borel sets in M x M, which proves (11}.

4. Proof of Theorem 1.1

We shall present a proof in a more general framework of resolvable ranks. Since,
as was established in Section 3, the ranks determined by Borel derivatives are
resolvable, Proposition 4.1 implies readily Theorem 1.1, in fact, with a slightly
stronger assertion.

4.1 PROPOSITION: Let §: £ — w; be a resolvable rank on a separable metrizable
space E, let A be a Souslin set in FE and let Z C A intersect stationary many
layers §71({¢}). Then, for all but non-stationary many & € wq, if AN§~1({¢})
is covered by sets Fy, Iy, ... closed in F, then some F,, intersects simultaneously

ZN Ua<€ d~*({a}) and Z N Ua>£ 1 ({a}}).
Proof: Let w: M — E be a resolution for the rank & and let
(1) Y =771(Z).

Using Remark 2.5 and Lemma 2.4 with S = 7~ '(A) one gets a copy K of
B(X) closed in M, such that

(2) K=KnY cx YA).

Let Ye = KNY Ny (0 0m) 71 ({a}), M) = min{ : z € ¥¢} for z € K, and
let us consider the natural stratification of K defined by A, as in Section 2(5).
By Remark 2.3 (cf. also (4) in Section 2) there exists a c.au.b. set I' such that,
for any relatively open V in K|

(3) VN(som) '({€}) # 0 implies VNY N | J(5om) ™ ({a}) #0 for ¢ € T.
a<é

Having set a background, let us assume, aiming at a contradiction, that for
each £ in a stationary set © in w; there exists a countable collection T of closed
sets in E such that AN§~1({£}) C YZ¢ and, for each F € T, either

(4) FNnZn U §'{e})=0 or FNZn U 5 '({a}) = 0.

a<é a>§
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Then, Lemma 2.6 applied to the restriction #|K : K — E, the inclusion in (2),
and Remark 2.3 provide £ € ©NT', F' € I, and a relatively open set V in K with
VNn(@on) ' ({€}) # 0 and n(V) C F.

By (1) and (3),

(5) FnznlJ & '{a}) #06,
a<é

and since V is non-separable, (2) implies that VNY N, (8o 7)1 ({a}) # 0,
hence, again by (1), also

(6) Fnzn|J6'({e}) #0.
a>§
However, (5) and (6) contradict (4), which completes the proof. |

5. Proof of Theorem 1.2

SOUSLIN QUASI-ORDERS ON B(N;) RESPECTING THE LAYER STRUCTURE. We
say that a relation < is a quasi-order, cf. [KM76, 11, §9], if it is reflexive and
transitive, but not necessarily strict, i.e., we allow both z < y and y <X z for
distinct z,y. A set C is a chain (an antichain) with respect to =< if for any (for
no) distinct 2,y in C, z <X y or y < z. We say that z, y have a common extension,
if there is a 2z with z < z and y < z.

Let < be a quasi-order on B(X;). We shall say that < is Souslin if

(1) R = {(s,t) : s Xt or t X s} is Souslin in B(X;) x B(R;),
and we shall call < proper if
(2) Ra = {(s,t) : s 2t and t < s} is closed in B(R1) x B(Ry).

Recall that B are the layers of B(X;) defined in Section 2(2). We shall say
that < respects the layer structure in B(R;) if there exists a c.u.b. set ' in wy
such that

(3) if {s,t} C Bg is an antichain and £ € T,
then s,t have no common extension,

(4) ifseBeandfeF,then{t:tjs}cUBQ;
a<lg

cf. [ChGPI8, Sec. 5].
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5.1 Remark: Let K be a copy of B(R1) in B(®;). If < is a quasi-order on B(R;)
satisfying (1)-(4), then the restriction of < to K also satisfies (1)—(4), as by
Remark 2.3 properties (3) and (4) do not depend on any specific choice of the
homeomorphism of B(R;) onto K.

5.2 LEMMA: Let < be a proper Souslin quasi-order on B(X;), respecting the
layer structure in B(Xy). Then either there is a stationary set of layers, each
containing a Cantor set which is an Ra-independent <-chain, or there is an
=<-antichain intersecting all but non-stationary many layers in a Cantor set.

Proof: The main idea of the proof is similar to that in the proof of Lemma 5.2 in
[ChGPY8]. Assume that the first part of the alternative fails. We shall construct
an antichain satisfying the conditions of the second part.

Let KC denote the collection of closed subsets of B(R;) homeomorphic to B(X;)
and let K € K. We say that < splits K if there is an uncountable discrete
collection K C K of subsets of K such that every selector for Kg is an <-
antichain.

Assume first that < splits every element of . This leads immediately to a
sequence Ky, Ki,... of discrete subcollections of K such that each K € K,,_;
contains uncountably many elements of K,,, K,, refines K,,_1, each selector for
K. is an antichain, and diam(K) < 1/n for K in K. Then L =, UK, is a
closed copy of B(N;) which is an <-antichain. By Remark 2.3, L N B¢ contains
a Cantor set for all but non-stationary many €. Thus the proof is completed in
this case.

Suppose now that < does not split some K € K. To simplify the notation,
assume that K = B(R;); cf. Remark 2.3.

Observe that, by (4), every open W C B(X;) with W x W C Ra, cf. (2), is
separable. Thus, by Lemma 2.7, for all but non-stationary many £, there exists
an Ra-independent Cantor set C¢ C Be. Furthermore, a theorem of Galvin, cf.
[Ke94, 19.7], applied to R restricted to C¢ yields, by (1), a Cantor set C’é which
is either a <-chain or it is an <-antichain. Since we assumed that the first part of
the alternative in Lemma 5.2 is not true, we are left with all but non-stationary
many C; being the antichains. To simplify the notation we shall assume that

(5) C¢ C B is an < -antichain for £ € T,

where I' has also the properties described in (3) and (4).
For any compact set C C B(®,), let us put

(6) R(C) = {t: (s,t) € R for some s € C}.
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Then R(C) is Souslin, being the projection of a Souslin set RN (C x B(Xy))
parallel to the compact axis.
For each o € T, let

(7 Co ={C C Cy: C is a Cantor set and R(C) intersects
only non-stationary many layers Be}.

Assume that C, # § for a € T. Choose C!, € C, and let A, be a c.ub. set
such that

(8) for £ € Ay, R(CL)NBe=10.

Let A be the diagonal intersection of the sets A, NT, cf. [Kun80, 11, 6.14], i.e.,
A is a c.u.b. set such that

(9) fa<f of€A, thenfeA,.

Then U{C% : £ € A} is an <-antichain. Indeed, by (5), all C; are antichains, and
(8) and (9) guarantee that if s € C,, ¢t € Cf, with a < { and o,§ € A, then s
and t are <-incomparable.

Thus to finish the proof, it remains to consider the situation when there exists
a & € I with C; = (. We shall show that this leads to a contradiction with our
assumption that < does not split B(Ry).

To this end, divide C; into disjoint Cantor sets {C, : r € 2N}. Since C¢ = 0,
by (7) and Stone’s theorem, cf. 2.4 and 2.5, there exist K, € K such that

K. CR(C,)N | Bay forre2™.

a<¢

By (6), (4) and (3), every selector for the collection {K, : r € 2N} is an <-
antichain. We shall find an uncountable discrete refinement of this collection
consisting of elements of K.

Let d be a metric on B(X;). For each r € 2N let F, be an uncountable 1/n,-
discrete subset of K. Fix a natural n and an uncountable set {r, : & < w1} C 2N
such that n,_ = n for @ < w;. By induction on @ < w; we choose s, € Fy_ such
that the set {s, : @ < w} is 1/2n-discrete.

For each o« < w; let L, be a closed-and-open neighborhood of s, in K,
with diam(L,) < 1/6n. Clearly, L, € K and the collection {L, : @ < w1} is
1/6n-discrete. Therefore B(R,;) is split, a contradiction ending the proof. |

Proof of Theorem 1.2: As in Section 4, we shall present a proof in the framework
of resolvable ranks. The generality does not complicate the matter, enabling us
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to encompass the corresponding result for Lusin’s constituents [ChGP98, Propo-
sition 5.3]; cf. also Comment 7.1.

Let 6: F — w; be a resolvable rank. We shall say that a partial order < on E is
resolvable simultaneously with the rank § if there exists a resolution 7: M — E
for 4 such that

(10) {(u,v) € M x M : 7(u) < w(v)} is Souslin in M x M.

If the partial order < and the rank § are determined by a Borel derivative
D: 2% — 2% ¢f. Section 1, then, by Section 3(8),(11), < is resolvable simulta-
neously with 6 on £. Moreover, the initial segments {D*(K) : @ < §(K)} of <
on £ are linearly ordered by < and ¢ is non-decreasing with respect to <. Thus
Proposition 5.3 below implies Theorem 1.2.

5.3 PROPOSITION: Let 6: E — w; be a resolvable rank on E and let < be a
partial order on E resolvable simultaneously with §. If the initial segments of <
are countable and linearly ordered by <, and § is non-decreasing with respect
to =, then each Souslin set A C E intersecting stationary many layers §—1({¢})
contains an <-antichain intersecting all but non-stationary many layers §—1({£})
in & Cantor set.

Proof: Let n: M — E be a resolution for ¢ satisfying (10) and let A be a Souslin

set in E intersecting stationary many layers 6~ ({¢£}). Then S = 77 1(A) is a

Souslin set in M and by 2.5 and 2.4 there exists an embedding h: B(X;) — 5.
Consider the quasi-order < on B(R;) defined by

(11) s 2t iff (moh)(s) X (moh)(t).

By Remark 2.3 applied to K = h(B(¥1)), < is a quasi-order respecting the layer
structure of B(R;). Condition (10) implies that < satisfies (1), and the continuity
of mo h gives (2). Thus < satisfies the assumptions of Lemma 5.2.

If a Cantor set C in B(R;) is Ra-independent, where Rp is the relation given
by (2), then 7 o h maps C injectively onto a Cantor set H C A. Observe that,
by (11), C is a =<-chain (antichain) exactly when so is H.

By (10) and (11), the set {(z,y) € H x H : z < y} is analytic as the continuous
image of the restriction of < in B(R;) to C x C. Since the initial segments of <
on E are countable, the relation < restricted to H x H is of the first category,
by the Kuratowski-Ulam theorem, cf. [Ku66, §22, VI]. It follows that H is not
a =-chain and consequently, the first part of the alternative in the assertion of
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Lemma 5.2 is false. We are left with the second part of the assertion, which, in
view of Remark 2.3, implies the assertion of Proposition 5.3. |

6. Hurewicz-type results

The assertion of Proposition 4.1 yields the following Hurewicz-type result: for
all but non-stationary many £ there exists a Cantor set C¢ C (ANd~1({¢}))uZ
with both C¢ N, 67 ({a}) and C¢ NU,se 67 ({a}) countable and dense in
Ce.

To get such Cantor sets, one can apply a variation of a Kechris-Louveau-
Woodin theorem [Ke94, 21.22] described in [MP95]. Alternatively, one can also
follow the idea of Solecki’s proof of this theorem [S094, Corollary 8] (notice that
one can replace in this proof the use of [S094, Theorem 1] with some more direct
arguments). Along these lines, we shall refine now Lemma 2.4 by relaxing the
assumption that Y C §, and we shall use this result to indicate some variation
of Proposition 4.1 with Z not necessarily contained in A. In our proof, Stone’s
techniques will be combined with some ideas from [S094, Corollary 8].

Let @ = {s € B(N;) : the support of s is finite}. In the sequel we shall
concentrate on Q, but, in fact, any dense o-discrete subset of B(¥;) can be used
to the same effect; cf. Comment 7.7.

6.1 PrROPOSITION: Let S be a Souslin set in a completely metrizable space X
and let Y C X. Then either there exists an F,-set F' disjoint from Y such that
S~ F can be decomposed into countably many locally separable sets, or else
there exists a homeomorphic embedding h of B(X;) onto a closed in X subset of
SUY with h(Q) CY and h(B(®1) Q) C S.

Proof: Put X’ = X x2N and let 9: X’ = X be the projection, S” a G5-subspace
of X' with ¢(S") = S, and Y’ = ¢~ }(Y).

Let I={WcCX :WnNS =0or WNY' =0} and let I* be the collection
T enriched by separable subsets of X’. By a standard transfinite exhaustion
procedure, cf. [St63, Theorem 4’], one can write X' = K U J, where J is the
union of a o-discrete subcollection of closed sets from Z*, and K is a closed set
with no nonempty relatively open subset in Z*. If K is empty, then the first part
of the alternative holds. Otherwise, K is nowhere locally separable,

(1) H=KNY'isdensein K
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and

(2) G:KﬂS':manithGoDG13-~- open and dense in K.
n>0

Let n > 0, let U be open in K and let xg € U N H. Since no nonempty open
set in K is separable and v is perfect, there exist, for 0 < { < wy, z¢ € UNG,
such that {9(z¢) : £ <wi} is discrete in X as an indexed collection of singletons.
Thus we can find a family U = {U; : £ < w;} of open subsets of K such that
$§EU5C7§CUfOr£<w1,U§CGn for £ > 0, and P(U) = {P(Ug) : £ < w1}
is discrete in X. Finally, we define yo = 2o € Ug N H and we use (1) to choose
ye €Ug N H for £ > 0.

Therefore, starting with n = 0, U(0) = K and arbitrary y(#) € H we can
define, by repeating the above observation, collections U, = {U(7) : 7 € (w1)"}
of open subsets of K with mesh(U,+1) < 1/(n + 1), the closures of Uy, 41 in K
refining U,,, and ¥ (U,) discrete in X. Moreover, in the inductive construction
we fix, for each 7, a point y(7) € U(7) N H and we make sure that

(3) y(770) = y(r) € U(770),

(4) U(r™8) C Gy for >0,

where |7| denotes the length of 7.

Let f: B(R;) — K be defined by the condition f(t) € (> U(t/n). Then
L = f(B(X1)) = N,>o UUx is a closed in K copy of B(X;) and h = o f is
a homeomorphic embedding of B(R) onto a closed subset of X. By (3) and
(1), f(Q) € H C Y/, therefore h(Q) C Y. If t € B(Ry) @, then (4) gives
U(tln+1) C G, for infinitely many n, hence by (2), f(t) € G C §’, consequently
h(t) € S and the proof is completed. |

If the space X in Proposition 6.1 has weight Ry, then we get, cf. [ChGP95,
Theorem 1.2},

6.2 COROLLARY: Let S be a Souslin set in a completely metrizable space X
of weight Ry, let {P; : £ < w1} be a natural stratification of X, and let Y C
X. Then either there is an F,-set disjoint from Y and containing all but non-
stationary many layers S N P, or else for all but non-stationary many &, any
Fi,-set containing S N P intersects Y N, ¢ Po-

Proof: Suppose that the first part of the alternative fails. By Remark 2.5, the
first part of the alternative in Proposition 6.1 is not true, and we are left with
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the second part. Let & be a countable limit ordinal. Observe that the layer B,
defined in Section 2(2) is a dense Gs in |J,< Be and @ N U,
U. <¢ Be. By the Baire category theorem, each F,-set in B(X;) containing B
intersects @NJ, ¢ Be- Since Be C B(X;) \ @, Remark 2.3 gives the second part
of the alternative. |

B¢ is dense in

Corollary 6.2 suggests some variations of Proposition 4.1 with Z being not
necessarily a subset of A.

For example, let §: E — w;y be a resolvable rank, on a separable metrizable
space E, let A, Z be a pair of subsets of E with A Souslin in E. Furthermore,
suppose that there exists a resolution m: M — F for § such that, for X = M,
S =n71(A) and Y = 7~1(Z), the first part of the alternative in Corollary 6.2
fails. Then the second part of the alternative can be used to obtain an analogue
of Proposition 4.1.

It would be interesting to get results in this direction not involving explicitly
the resolutions. We finish this section with a brief description of an example
exhibiting some essential difficulties in applying the above approach to this end.

6.3 Example: Let WO be the space of well-ordered subsets of the rationals,
and let WOy = {A € WO : type(4) = £} be the £th constituent; cf. In-
troduction. Let us define a rank é on WO x WO by the formula §(4, B) =
max{type(A), type(B)}.

Then A = {(A,B) € WO x WO : type(A) # type(B)} is Souslin, but not
Borel in WO x WO; cf. [Ke94, 34.C], [Ka81, Theorem 4].

However, if 0: B{(R;) = WO is the standard resolution considered in [ChGP95,
Sec. 2], then 7: B(R;) x B(R;) = WOxWO is a resolution for § such that 7 1(A)
is an F,-set in B(R;) x B(Ry); cf. [Po79, Lemma 1].

Using the Continuum Hypothesis one can select points p € WO, x WO in
such a way that A cannot be separated from Z = {p; : £ < w1} by any Fj-set;
cf. [Ka81, Theorem 4]. It is not clear if, for every such choice of Z, the assertion
of Proposition 4.1 is true for the pair A and Z.

7. Comments

7.1 GENERALIZATIONS OF THEOREMS 1.1 AND 1.2.

Another classical rank related to the Cantor-Bendixson derivative D: 2X —
2X s §*: 2X — w,, which associates to every K € 2% the minimal £ with
D*1(K) = D¥(K). This can be put in the following more general framework.
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Let B C 2% be a Borel set. Then a Borel derivative D: 2X — 2% determines
a rank ég: £ — wy, where £ is the set of all K € 2% such that D¢(K) € B
for some &, and é5(K) is the minimal £ with that property. In the case of the
Cantor-Bendixson derivative, the rank § corresponds to the collection B of finite
sets, and the rank 4* corresponds to the collection B consisting of all perfect sets
and the empty set. The arguments from Section 3 can be readily applied also in
this situation.

To show that é5: &€ — w; is a resolvable rank, adopt the notation from Section
3 and consider M = {(K,s) € 2% x B(Ry) : 65(K) = x(s)}; cf. (5). Then
M C & YB) C {(K,s) : 65(K) < k(s)}; cf. (1). As {(K,s) : 05(K) < k(s)} =
Un Ua<w, UﬂSa(Dﬁ)_l(B) x V(n,a) is the union of a o-discrete collection of
Borel sets, (2) implies that M is Souslin in 2% x B(R,); cf. (6). Thus one can use
the projection m: M — £ and Remark 3.2 to get a resolution for dp; cf. Comment
7.6.

Moreover, if we assume that D"(B) C B for n < w, the justification of
condition (11) remains valid for the set M determined by dp. It follows that
the partial order < generated by D is resolvable simultaneously with dz. Since
dp is then non-decreasing with respect to <, the assumptions of Proposition 5.3
are satisfied by the rank determined by the set B.

Furthermore, the compactness of X can be relaxed to o-compactness.

Indeed, suppose that X is a o-compact metrizable space and let 2% denote the
set of all closed subsets of X with the Effros Borel structure; cf. [Ke94, 12.8].

Fix a function D: 2% -3 2% which is Borel and monotone. Since the Effros
Borel o-algebra in 2% is generated by the sets (U) = {K € 2X : K c U},
with X N U compact, it follows that all iterations D¢: 2X — 2% are Borel and,
moreover, ®: 2X x B(R;) — 2% defined by formula (1) in Section 3 satisfies (2)
in Section 3; cf. [Ke94, 34.11].

As before, the arguments from Section 3 show that each rank dz determined
by D and a Borel set B C 2% (closed with respect to all countable iterations
of D) is resolvable (and satisfies the assumptions of Proposition 5.3). Thus we
can use Propositions 4.1 and 5.3 to obtain the corresponding generalizations of
Theorems 1.1 and 1.2.

7.2 SEMISCALES WHICH DETERMINE RESOLVABLE RANKS.

Let E be a subset of a completely metrizable separable space X. Following
[Ke94, p. 300] we shall call a function ¢: E — B(R;) a semiscale provided
z; — = with z; € E and ¢(z;) — s, imply z € E. We shall consider in the sequel
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semiscales satisfying in addition
(%) if z; - z with z; € F and ¢(z;) — s, then x(p(z)) < x(s),

where the function «: B{®;) — w; was defined in Section 2(1). The condition (*)
is weaker than the semicontinuity which distinguishes the scales among semis-
cales; cf. [Ke94, 36.2].

PROPOSITION: Let ¢: E — B(R;) be a semiscale with property (x) and let
b,: E — w1 be defined by 6,(z) = k(p(z)). If the fibers 65 ({£}) are absolutely
Borel, then the rank d, is resolvable.

We shall sketch a proof of this fact. Let X be the completely metrizable

extension of E and let G(¢) be the closure of the graph of ¢ in X x B(¥N;).

Then, ¢ being a semiscale, G() projects onto E. Consider M = {(z,s) € G(p) :
8,(z) = k(s)}. The condition (x) implies that G(¢) C {(z,s) : d,(z) < s(s)}.
Hence, arguing as in Comment 7.1, one can show that M is Souslin in X x B(X;)

and 4, is a resolvable rank.

7.3 SOME CONCRETE RANKS RELATED TO THE CANTOR-BENDIXSON
DERIVATIVE.

Let D: 2% — 2% be the Cantor-Bendixson derivative and let §: 2% — w;U{oc}
be the Cantor-Bendixson rank determined by D. Hurewicz [Hu30| defined a
concrete open sieve through which the complement of £ = {K : §(K) # oo}
is sifted and showed that the corresponding Lusin—Sierpinski index of K € &
is closely related to the Cantor-Bendixson rank §(K). Still, the resolutions for
Lusin-Sierpiriski indices constructed in [ChGP95, 6.1] seem not enough to get the
assertions of Theorems 1.1 and 1.2 for the Cantor-Bendixson derivative directly
from Hurewicz’s results.

An interesting approach to the Cantor-Bendixson derivative, due to Kechris
and Louveau, is presented in [Ke94, 36.G.3]. This approach can be modified to
get a scale which, by Comment 7.2, gives in effect a resolution for the Cantor—
Bendixson rank. However, there are some difficulties in extending this method
to the case of more general derivatives, and also more adjustments are needed to
get in this way resolutions suitable for Theorem 1.2.

7.4 AN INCREASING SEQUENCE OF F,, ;5 SETS WHICH DETERMINES A RESOLVABLE
RANK.

Let A = {a{a) : @ < w1} be a subset of the irrationals P of cardinality ®;
enumerated without repetitions. Let E = AN ¢ PN, and let §: E — w; be
defined by 8(a(ag), a(a1),...) = min{a : a, < a for all n}.
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The rank & is resolvable. Indeed, the map w: B(®;) — E defined by
m(ag, 0, ...) = (a{ag),a{ay ), . ..) satisfies § o m = &, thus 7 is a resolution for &;
cf. Section 2(1),(2).

The sets A¢ = {a(a) : a < £} are countable, hence E¢ = A? are Fys-sets in
PN. The increasing sequence E; C --- C E¢ C --- determines the rank 4, as
0(z) =min{é :x € E¢} forz € E.

If we require in addition that A is a rarefied set [Ku66, §40, III], then the
sets E¢ are relatively Gs-sets in E. In this case the rank ¢ is determined by an
increasing w;-sequence of Gs-sets in E.

However, if E is a separable metric space, then no resolvable rank é: E — wn
with §(E) stationary can be determined by an increasing w;-sequence of F,-sets
in F; cf. Proposition 4.1.

The rank x: B(X;) — w; with the resolution id: B(X;) — B(X;) show that
separability of E is essential in Proposition 4.1 {(and also in Lemma 2.6). Still, for
resolvable ranks § on an arbitrary Hausdorff space E, the part of the assertion
concerning non-separation “from below” is valid, and, in effect, almost every layer
contains a Cantor set.

7.5 BOREL RESOLUTIONS.

Let 3{R;) be the space of all functions z: w; — N with countable support,
equipped with the pointwise topology, i.e., £(X;) is the X-product of R; copies
of natural numbers. For z € £(R;), let §(z) be the minimal ordinal « such that
z is zero on the interval {a,w;).

In [ChGP98, Sec. 4] a Borel surjection 7: B(X;) — ¥(X;) was constructed with
all the properties required in the definition of a resolution for the rank § except
the continuity of m. The parametrization = is useful in analyzing Souslin sets in
E(R;). However, the rank d: £(R;) — w; has no resolution. In fact, the space
of countable ordinals w; with the order topology embeds in £(X;) as a closed
subspace so that 4 is the identity on wy, and the identity on w; is not resolvable;
cf. the last statement in 7.4.

7.6 OMITTING SOME LAYERS BY RESOLUTIONS.

The resolution for the rank ¢ defined in Section 3(8) neglects the Borel set
671({0}). Although the omission (even of non-stationary many layers) makes no
difference in our arguments, one can easily fill the gaps contained in analytic sets

(in non-stationary many layers) by using a surjection from the free union of the
irrationals added to the domain of the resolution.



122 J. CHABER AND R. POL Isr. J. Math.

7.7 REMARKS ON PROPOSITION 6.1.

The choice of the o-discrete dense set in B(X;) in Proposition 6.1 is inessential.
Indeed, for any o-discrete dense subset T' of B(R;) there exists a homeomorphism
of B(N;) onto B(R;) mapping T onto Q.

Since no first category subset of B(X1) contains stationary many layers B, the
two conditions in Proposition 6.1 cannot be satisfied simultaneously.
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